REM x-cut Integration Project - Project Planning Meeting -

Half Moon Bay, CA Robert Clay 28 July 1999

Meeting Objectives

- Make sure we all understand basic structure, vision, and goals of the project
 - » project leadership and program connections
 - » key project elements
 - » who's signed up for what?
- Problem definition and design
 - » focus on requirements from our users (Charlie, Greg, Lee)
 - » need long-term design vision/plan
 - » need short-term prioritized plan to get high-valued deliverables out in FY00

Meeting Agenda

08:30 introductions and agenda review (robert/all)

08:45 opening remarks from REM program (pete dean)

09:00 project overview (robert)

09:30 model manager / meshing framework design

- review functional requirements (ben)
- what do designers need? (lee/charlie/greg)

10:15 break

10:30 continue above design discussion

12:00 lunch

Meeting Agenda

- 12:30 discussion of data abstractions (all)
 - mesh representations (EX-II/DMF)
 - solid model representations
- 13:30 discussion of core architecture (REM arch group report)
- 14:00 break
- 14:30 discussion of viz requirements/plans
- 15:00 numerical components (alan)
- 15:30 discuss next steps and action items
- 16:30 adjourn

REM x-cut Integration Project - Project Overview -

Half Moon Bay, CA Robert Clay 28 July 1999

Basic questions

- What is the REM x-cut integration project?
- What problem are we solving?
- How are we planning to solve this problem?
- Who's involved, and how?
- What's the current status?
- What's next?

X-cut Integration Project

- REM x-cut focus application serves as a focal point for program and technology integration
 - » B61 laydown is the initial x-cut focus app
 - » other apps being evaluated for follow-on activities
 - » requirements are based on mission critical weapons applications
 - » view problem from soup to nuts (end-to-end, D-to-A, perspective)
 - » prioritize deliverables based on value to customer (designers and weapons codes)
- REM/PSE/DISCOM programs merge to meet strategic needs
 - » integrated project plan (PSE/DISCOM IP) developed
 - » project needs apps support and involvement

B61 Laydown Problem

- FY00 x-cut focus app -

- Primary purpose: to provide focus and demonstrate core REM/PSE/DISCOM technologies on a mission critical application
- Initially focusing on the nose-cone-crush modeling problem
- Driven by the needs of the weapons designers, analysts, and application developers (B61 designers and analysts, Sierra, Presto/Pronto, ACCESS)
- Key objectives... to significantly reduce the (wall-clock) time and complexity required to setup and run models while improving basic modeling capabilities, and to provide improved model management (rerun and archiving) capabilities.

Really big picture (integrate end-to-end modeling)

Large-scale integrated model management is a nightmare

... by hand:

Large-scale integrated data management isn't much better

Current state of B61 laydown model setup system represents an ad hoc evolution of tools

Is this problem unique to the B61 laydown modeling effort?

Absolutely not.

Essentially all SNL FE app codes and modeling efforts use a common set of tools that comprise the 'model setup system' (e.g., ACCESS).

Scalable Component Architectures (ASCI SW Integration Barrier Curve)

99	00	01	02	03	04
•DOE-wide component architecture specifications •CCA v1.0 specification & prototyping •ESI v1.0 specification & prototyping	•DOE-wide component architecture implementations •Additional HP component specifications and prototyping •CCA/ESI v1.0 implementations		•Integrated HP, distributed object, component frameworks •CCA/ESI v2.0 implementations Fully in	cor	•Fully integrated scalable, multi-scalable, multi-scalable, multi-scalable, multi-scalable, multi-physics, component -based computations TA ly integrated moonent-based lti-physics apps
Burn	ode X				
Libraries	Serial	Distributed Object	Components		

Problem Setup

Solution (CS strategy)

- CS technical strategy
 - » develop/deploy a fully extensible component architecture
 - integration of loosely- and tightly-coupled components
 - draw from existing frameworks (SI/PDO, PRE, CCA, ESI, FEI, IDEAS, ...) to form core architecture and services
 - » leverage commercial developments (e.g., EJB, CORBA, COM, ...)
 - » address technology gaps missing from commercial sector
 - » base the components on open standards where possible
- Focus on a particular ASCI weapons problem
 - » top-down design and prioritization
 - » ASCI scale problems size matters
- Run this as a large-scale SW project

Primary Project Elements

- Integrated model development and management system
 - » Model Manager
 - provide integrated environment for D-to-A tools and info
 - simplify process by better, integrated tools
 - improve info content and repeatability for modeling runs
 - improve 'rerun' capability for design and model refinement
 - objective is to drive wall-clock time down and reliability up
 - » "In-core" DMF (persistent object)
 - » Integrated meshing tools
 - mesh joining and validation (w/ vis)
 - improve selected tools as well as overall integration (e.g., Gjoin++)
 - standards-based development:
 - data standards (e.g., DMF, solid model representations)
 - component-based

Primary Project Elements

Component-base system architecture

- » fully extensible
- » leverage existing tools (e.g., PRE, SI/PDO, ACCESS,...)
- » serves as backbone for integrating tools and servics
- » addresses both loosely-coupled and high-performance domains

Numerical services components:

- » continued advances to FEI and ESI (solver services)
 - spec and implementation advances
 - include and augment existing methods base
 - eigen solver / direct solver / multi-level solver extensions
 - combine collective DOE capabilities for modelers
- » general constraint handler component ("constraint central" Lee Taylor)
 - unified interface for (FEM) constraint handling
 - BC / MPC / contact constraints
 - hierarchical prioritization (BC <- MPC <- CC)
 - number of constraints ~millions (i.e., ASCI scale)

Primary Project Elements

- Visualization components
 - "standard" ASCI mesh viewing tools
 - » "standard" ASCI FE results (e.g., isosurfaces) viewing tools
 - » DMF-based interface to mesh data
- Desktop interface to services
 - » web-based access
 - » leverage SNL common engineering environment tools

X-cut Staff

Robert Clay - lead	SNL 8980	(925) 294-3193	rlclay@ca.sandia.gov
Lee Taylor – co-lead	SNL 9121	(505) 284-4560	lmtaylo@engsci.sandia.gov
Ben Allan	SNL 8980	(925) 294-2453	baallan@sandia.gov
Rob Armstrong	SNL 8980	(925) 294-2470	rob@sandia.gov
Rich Detry	SNL 8920	(505) 844-7722	rdetry@sandia.gov
Victor Holmes	SNL 9215	(505) 844-5297	vpholme@sandia.gov
John Linebarger	SNL 6411	(505) 845-9161	jhlineb@sandia.gov
Dave Miller	SNL 6532	(505) 844-3677	djmille@sandia.gov
Noel Nachtigal	SNL 8980	(925) 294-4677	santa@z.ca.sandia.gov
Dino Pavlakos	SNL 9215	(505) 844-9089	cjpavla@sandia.gov
Ly Sauer	SNL 6534	(505) 284-6258	ldsauer@sandia.gov
Gary Templet	SNL 8990	(925) 294-4540	gjtemp@sandia.gov
Ruthe Vandewart	SNL 6532	(505) 844-7798	rlvande@sandia.gov
Bob Whiteside	SNL 8920	(925) 294-3565	raw@ca.sandia.gov
Alan Williams	SNL 8920	(925) 294-3891	william@sandia.gov

x-cut FY00 Budget Summary

Core architecture & framework services	4.0 FTE
Front-end service presentation	1.0
Model Manager	4.0
Integrated meshing components	5.5
Numerical components	2.25
Data service components	1.0
Viz service/component support	2.0
Planning/mngmt/integration	1.0
FTE Summary	20.75 FTE
\$250k/FTE	5.2 M\$
DC	0.1 M\$
Total (PSE & DISCOM)	5.3 M\$

Architecutre (4 FTE)

	Λ
n	Armstrong
	<i>,</i> 9

Ly Sauer

Bob Whiteside

Vic Holmes

Robert Clay

1.0

1.0

0.5

1.0

0.5

Model Manager (4 FTE)

Ben Allen

Ruthe Vandewart

Rob Leland*

tbn

0.5

1.0

0.5

2.0

Integrated Meshing Tools (5.5 FTE)

Noel	N	acł	ntig	al

NCSA

Rob Leland*

Gary Templet

Don Funkhouser

tbn

0.5

1.5

1.0

0.5

1.0

1.0

Numerical Frameworks (2.25 FTE)

Alan Williams

Ben Allan

Noel Nachtigal

tbn

1.0

0.5

0.5

0.25

Data Services (1 FTE)

Philip Kegelmeyer*

1.0

Front-end Services (1 FTE)

Dave Miller

tbn

0.5

0.5

Vis (2 FTE)

John Linerbarger

Dino Pavlakos*

1.0

1.0

Management and Integration (1 FTE)

Robert Clay

Jim Ang

0.5

0.5

Current status

- PSE/DISCOM IP submitted
 - » written as joint program project plan
 - » detailed project plan due by 10/1/99
- B61/Presto/Sierra functional requirements definition in progress
 - » primary areas identified
 - » detailed requirements definition in progress
 - » model manager spec being drafted
 - » Gjoin++ spec in progress
 - » DMF spec in progress (just starting)
 - » Mesh visualization requirements definition in progress

Tools are being improved and turned into components and services

What's next?

- Complete integrated plan for x-cut project
 - o due by 10/1/99
 - » synchronize with B61 requirements
- Software Integration Architecture specification
 - » draft due 8/99
 - » proposal due 11/99
- Integrated "problem setup" design spec
 - » define functional requirements
 - » design system
 - » define path to build system
 - long term design needed
 - short term development critical what can we do in 6-12 months to be help Charlie, Greg, Lee, and co.?

end

